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Smoluchowski 
coagulation problem 

•  Coagulation problem:  Cr+CsàCr+s 

•  Master equation: 

 

•  Applications in 

–  Colloidal physics 

–  Crowd dynamics 

–  Social sciences 

–  Astrophysics 

–  Polymer chemistry 
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M.	von	Smoluchowski	
Drei	Vorträge	über	Diffusion,	Brown‘sche	Molekularbewegung	und	Koagula=on	von	Kolloidteichen	
Physik.	Z.,	17	(1916),	pp.	557–571	



	
		

•  Master equation: 
 
 
 
 
 
 
Reaction constant: ar,s=rs 

 
 à inviscid Burgers equation:  
     (M1(t) – 1. moment of cr) 
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Smoluchowski 
coagulation problem 

Transformation using generating function: 
 

Substitution: 

J.	WaCs	
An	introduc=on	to	mathema=cal	models	of	coagula=on-fragmenta=on	processes:	
A	discrete	determinis=c	mean-field	approach	
Physica	D,	222	(2006),	pp.	1–20 



	
		

 
•  Already highly non-trivial behavior: 
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Smoluchowski 
coagulation problem 

Mass conservation violated 
after critical time tc 

Change in the asymptotic decay 
of the size distribution at tc: 
exponential à algebraic 
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J.	WaCs	
An	introduc=on	to	mathema=cal	models	of	coagula=on-fragmenta=on	processes:	
A	discrete	determinis=c	mean-field	approach	
Physica	D,	222	(2006),	pp.	1–20 

Cr+CsàCr+s 



•  Smoluchowski coagulation problem:  

–  Aggregates treated as a ‘blob’ without inner structure 

•  Challenge:  
Find a model for growing discrete structures, e.g. highly crosslinked networks 
evolving in time 

•  From local to global: 

–  Local topology determined by arbitrary process that grows the network 

–  Modeling the network as a random graph to extract global properties 
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What about the topology? 



Network theory 
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•  Graph: 
–  Set of nodes connected by edges  

•  Nodes: Degree (number of edges), various attributes 
•  Edges: Directional (in & out), bidirectional 

–  Topology of a structure  
–  No spatial information 
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Network theory 
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•  Random graph with arbitrary degree distribution: 
 
–  Degree distribution u(i,j,k): 

•  Probability of a node  
for having  
–  i in-edges  
–  j out-edges  
–  k bidirectional edges 

–  Random graph: 
•  Probability distribution over all possible graphs 
•  Maximizes the entropy for a given degree distribution 
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Network theory 
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•  Degree distribution: 
–  Imagine global process governing the degree distribution 

•  t0: No component with s>1 

•  t0<t<tc: Growth of component  

•  tc: Phase transition – Emergence  
 of the ‘giant component’ 
Giant component: scales linear  
with size of system 
 

•  t>tc: Weight fraction of  
 giant component increases 

•  t∞: No aggregate with s>1,  
 only giant component 
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•  State of a node defined by  
–  Properties that alter the probability of a node to connect: v, p 
–  # in-edges, i 
–  # out-edges, j 
–  # bidirectional edges, k 

•  Concentration of states of nodes determined by polymerization 
reactions: 
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The degree distribution 

Information on history of edge formation 

Master equation: Reaction network: 
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•  Goal: Extract size distribution of connected components from local information 

•  Random graph with arbitrary degree distribution u(i,j,k)  
determined by the reaction mechanism 

•  Transformation to the domain of generating function: 

–  Original degree distribution: 

–  Probability distribution for a node reached by an edge to be connected to further nodes: 

•  Reached by in-edge 

•  Reached by out-edge 

•  Reached by bidirectional edge 

  

From local to global 

Minimum 
connectivity: 1 

Normalization more in-edges à 
higher probability to be 

reached 



•  Connected components: 

–  Size distribution   w(s) à W(x) 

–  Biased size distribution: 
Size distribution of connected component reached by 

•  In-edge    win(s) à Win(x) 

•  Out-edge    wout(s) à Wout(x) 

•  Bidirectional edge  wbi(s) à Wbi(x) 
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From local to global 

Uin …
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•  Size distribution of connected component  
reached by in-edge win 

•  Size distribution of i out-components: 
 
Convolution:  wout(s)*wout(s)*…*wout(s)  à  Wout(x)i 

•  Size distribution of i out-, j in- and k bidirectional components: 
 
wout*…*wout*win*…*win*wbi*…*wbi   à  Wout

i Win
j Wbi

k 

•  GF of size distribution for component reached by in-edge: 
 
Win=x Σ uin(i,j,k) Wout

i Win
j Wbi

k 

  
Win=x Uin(Wout,Win,Wbi) 
 
 
Wout=x Uout(Wout,Win,Wbi) 
 

Wbi=x Ubi(Wout,Win,Wbi) 
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From local to global 
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Win=x Uin(Wout,Win,Wbi) 
 
 
Wout=x Uout(Wout,Win,Wbi) 
 

Wbi=x Ubi(Wout,Win,Wbi) 

•  3 coupled functional equations: 

 Win= x Uin(Wout,Win,Wbi) 
  
 Wout= x Uout(Wout,Win,Wbi) 

 Wbi= x Ubi(Wout,Win,Wbi) 
 
 

 à solve numerically 
 

  
 
•  GF of size distribution of connected 

component  
 
 
 W = x U(Wout,Win,Wbi) 
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From local to global 

Uout 

Uin 

Ubi 

U 

Uout Ubi 

Uin 

…

Win 

……
Wout Wbi 

Wout 
… …

Wbi 

W 

Win 



•  Back transform: 

–  Derivatives 

•  Problem: Numerically unstable (only feasible until s~30) 

–  Inverse Fourier transform: 

•  Advantage: stable, faster (s log(s)) 
•  Disadvantage: evaluation for all s necessary 
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From local to global 
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Component size distribution 

t<tc: w(s)	∝	e-s 
t=tc: w(s)	∝	s-3/2 
t>tc:w(s)	∝	e-s 

w(s)	∝	s-3/2 
	

Violation of the conservation of mass 
after tc 



•  Weight average component size defined as  
 
 
 
 
with 
 
 
 
 
 
 
 
 
 
 
 
 
with the partial moments μlmn of u(i,j,k) 
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Analytic criterion for existence of 
the giant component 
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•  Growing particles have discrete structure 

•  Modeling the structure as a network 

–  Random graph with arbitrary trivariate degree distribution 

–  Degree distribution determined by Master equation, reaction network, … 

–  Extract size distribution of connected components 

–  Ananlytic criterion for emergence of giant component 
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Summary 
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