Counting connected components in random temporal networks

Verena Schamboeck Spring meeting WSC 2017, Antwerpen, 15.5.2017

Smoluchowski coagulation problem

- Coagulation problem: $\mathrm{C}_{\mathrm{r}}+\mathrm{C}_{\mathrm{s}} \rightarrow \mathrm{C}_{\mathrm{r}+\mathrm{s}}$
- Master equation:

$$
\frac{d c_{r}}{d t}=\frac{1}{2} \sum_{s=1}^{r-1} a_{s, r-s} c_{s} c_{r-s}-\sum_{s=1}^{\infty} a_{r, s} c_{r} c_{s}
$$

- Applications in
- Colloidal physics
- Crowd dynamics
- Social sciences

- Astrophysics
- Polymer chemistry

Smoluchowski coagulation problem

- Master equation:

$$
\frac{d c_{r}}{d t}=\frac{1}{2} \sum_{s=1}^{r-1} a_{s, r-s} c_{s} c_{r-s}-\sum_{s=1}^{\infty} a_{r, s} c_{r} c_{s}
$$

Reaction constant: $a_{r, s}=r s$

Transformation using generating function: $C(z, t)=\sum_{r=1}^{\infty} c_{r}(t) e^{-r z}$

$$
\partial C(z, t)
$$ Substitution: $u(z, t)=-\frac{\partial C(z, t)}{\partial z}$

\rightarrow inviscid Burgers equation: $\left(M_{1}(t)-1\right.$. moment of $\left.c_{r}\right)$

$$
\frac{\partial u}{\partial t}=\left(M_{1}(t)-u\right) \frac{\partial u}{\partial z}
$$

Smoluchowski coagulation problem

- Already highly non-trivial behavior:

$$
\mathrm{C}_{\mathrm{r}}+\mathrm{C}_{\mathrm{s}} \rightarrow \mathrm{C}_{\mathrm{r}+\mathrm{s}}
$$

Change in the asymptotic decay of the size distribution at \dagger_{c} :
exponential \rightarrow algebraic

What about the topology?

- Smoluchowski coagulation problem:
- Aggregates treated as a 'blob' without inner structure
- Challenge:

Find a model for growing discrete structures, e.g. highly crosslinked networks evolving in time

- From local to global:
- Local topology determined by arbitrary process that grows the network
- Modeling the network as a random graph to extract global properties

Network theory

- Graph:

- Set of nodes connected by edges
- Nodes: Degree (number of edges), various attributes
- Edges: Directional (in \& out), bidirectional
- Topology of a structure
- No spatial information

Network theory

- Random graph with arbitrary degree distribution:
- Degree distribution u(i,j,k):
- Probability of a node for having
- i in-edges
- jout-edges
- k bidirectional edges

- Random graph:
- Probability distribution over all possible graphs
- Maximizes the entropy for a given degree distribution

Network theory

- Degree distribution:
- Imagine global process governing the degree distribution

- $t_{0}:$ No component with $s>1$

- $t_{0}<t<t_{c}$: Growth of component

- \dagger_{c} : Phase transition - Emergence of the 'giant component' Giant component: scales linear with size of system
- $\dagger>\dagger_{c}$: Weight fraction of giant component increases
- t_{∞} : No aggregate with $s>1$, only giant component

The degree distribution

- State of a node defined by
- Properties that alter the probability of a node to connect: v, p
- \# in-edges, i
- \# out-edges, j Information on history of edge formation
- \# bidirectional edges, k
- Concentration of states of nodes determined by polymerization reactions:

Master equation:

$$
\begin{aligned}
G_{v, p, i, j, k} & =k_{i}[I]\left((v+1) g_{v+1, p-1, i, j, k}-v g_{v, p, i, j, k}\right) \\
& +k_{p} c_{r d}\left((v+1) g_{v+1, p-1, i-1, j, k}-v g_{v, p, i, j, k}\right) \\
& +k_{p} c_{d b}\left((p+1) g_{v, p+1, i, j-1, k}-p g_{v, p, i, j, k}\right) \\
& +2 k_{t d} c_{r d}\left((p+1) g_{v, p+1, i, j, k}-p g_{v, p, i, j, k}\right) \\
& +2 k_{t c} c_{r d}\left((p+1) g_{v, p+1, i, j, k-1}-p g_{v, p, i, j, k}\right) .
\end{aligned}
$$

From local to global

- Goal: Extract size distribution of connected components from local information
- Random graph with arbitrary degree distribution u(i,j,k) determined by the reaction mechanism
- Transformation to the domain of generating function:
- Original degree distribution: $u(i, j, k) \rightarrow U(x, y, z)=\sum_{i, j, k}^{\infty} u(i, j, k) x^{i} y^{j} z^{k}$
- Probability distribution for a node reached by an edge to be connected to further nodes:
- Reached by in-edge

- Reached by out-edge

$$
\begin{aligned}
& u_{\mathrm{out}}(i, j, k) \rightarrow U_{\text {out }}(x, y, z) \\
& u_{\mathrm{bi}}(i, j, k) \rightarrow U_{b i}(x, y, z)
\end{aligned}
$$

- Reached by bidirectional edge

From local to global

- Connected components:
- Size distribution $\quad W(s) \rightarrow W(x)$
- Biased size distribution:

Size distribution of connected component reached by

- In-edge

$$
\mathrm{W}_{\text {in }}(\mathrm{s}) \rightarrow \mathrm{W}_{\text {in }}(\mathrm{x})
$$

- Out-edge

$$
\mathrm{W}_{\text {out }}(\mathrm{s}) \rightarrow \mathrm{W}_{\text {out }}(\mathrm{x})
$$

- Bidirectional edge

$$
\mathrm{w}_{\mathrm{bi}}(\mathrm{~s}) \rightarrow \mathrm{W}_{\mathrm{bi}}(\mathrm{x})
$$

From local to global

- Size distribution of connected component reached by in-edge $\mathrm{w}_{\text {in }}$
- Size distribution of i out-components:

Convolution: $\underbrace{\mathrm{w}_{\text {out }}(\mathrm{s})^{*} \mathrm{w}_{\text {out }}(\mathrm{s})^{*} \ldots{ }^{*} \mathrm{w}_{\text {out }}(\mathrm{s})}_{\text {i-times }} \rightarrow \mathrm{W}_{\text {out }}(\mathrm{x})^{\mathrm{i}}$

- Size distribution of i out-, j in- and k bidirectional components:

- GF of size distribution for component reached by in-edge:
$W_{\text {in }}=x \sum_{i, j, k}^{\infty} U_{\text {in }}(i, j, k) W_{\text {out }}{ }^{i} W_{\text {in }}{ }^{j} W_{b i}{ }^{k}$
$\mathrm{W}_{\text {in }}=x \mathrm{U}_{\text {in }}\left(\mathrm{W}_{\text {out }}, \mathrm{W}_{\text {in }}, \mathrm{W}_{\mathrm{b}}\right)$
$W_{\text {out }}=x U_{\text {out }}\left(W_{\text {out }}, W_{\text {in }}, W_{\text {bi }}\right)$
$\mathrm{W}_{\mathrm{bi}}=x \mathrm{U}_{\mathrm{bi}}\left(\mathrm{W}_{\mathrm{out}}, \mathrm{W}_{\mathrm{in}}, \mathrm{W}_{\mathrm{b}}\right)$

From local to global

- 3 coupled functional equations:

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{in}}=x \mathrm{U}_{\text {in }}\left(\mathrm{W}_{\text {out }}, \mathrm{W}_{\text {in }}, \mathrm{W}_{\mathrm{bi}}\right) \\
& \mathrm{W}_{\text {out }}=x \mathrm{U}_{\text {out }}\left(\mathrm{W}_{\text {out }}, \mathrm{W}_{\text {in }}, \mathrm{W}_{\mathrm{bi}}\right) \\
& \mathrm{W}_{\mathrm{bi}}=x \mathrm{U}_{\mathrm{bi}}\left(\mathrm{~W}_{\text {out }}, \mathrm{W}_{\mathrm{in}}, \mathrm{~W}_{\mathrm{bi}}\right)
\end{aligned}
$$

\rightarrow solve numerically

- GF of size distribution of connected component

$$
\mathrm{W}=x \mathrm{U}\left(\mathrm{~W}_{\mathrm{ou}}, \mathrm{~W}_{\mathrm{in}}, \mathrm{~W}_{\mathrm{bi}}\right)
$$

From local to global

- Back transform:
- Derivatives

$$
w(s)=\left.\left[\left(\frac{\partial}{\partial x}\right)^{n} W(x)\right]\right|_{x=0}
$$

- Problem: Numerically unstable (only feasible until s~30)
- Inverse Fourier transform:

$$
w(s)=\mathcal{F}^{-1}(W(x)), \text { with } x=e^{-\frac{2 \pi i}{N}}
$$

- Advantage: stable, faster (s log(s))
- Disadvantage: evaluation for all s necessary

Component size distribution

Violation of the conservation of mass after \dagger_{c}

$t<t_{c}: W(s) \propto e^{-s}$
$t=t_{c}: W(s) \propto s^{-3 / 2}$
$t>t_{c}: W(s) \propto e^{-s}$

Analytic criterion for existence of the giant component

- Weight average component size defined as

$$
\langle s\rangle=\left.W^{\prime}(x)\right|_{x=0}
$$

with

$$
\begin{gathered}
W(x)=x U\left(W_{\text {out }}(x), W_{\mathrm{in}}(x), W_{\mathrm{bi}}(x)\right) \\
\boldsymbol{\downarrow}\langle s\rangle \rightarrow \mathrm{infinity}
\end{gathered}
$$

$$
\begin{array}{|l|}
\hline \mu_{110}^{2}\left(2 \mu_{001}-\mu_{002}\right)+\mu_{011}^{2}\left(\mu-\mu_{200}\right)+\mu_{101}^{2}\left(\mu-\mu_{020}\right) \\
+\mu\left(\mu_{200}+\mu_{020}-2 \mu_{110}\right)\left(2 \mu_{001}-\mu_{002}\right) \\
+2 \mu_{101} \mu_{011}\left(\mu_{110}-\mu\right)+\mu_{200} \mu_{020}\left(\mu_{001}-\mu_{002}\right)=0 \\
\hline
\end{array}
$$

with the partial moments $\mu_{I m n}$ of $\cup(\mathrm{i}, \mathrm{j}, \mathrm{k})$

Summary

- Growing particles have discrete structure
- Modeling the structure as a network
- Random graph with arbitrary trivariate degree distribution
- Degree distribution determined by Master equation, reaction network, ...
- Extract size distribution of connected components
- Ananlytic criterion for emergence of giant component

Acknowledgements

- Computational polymer chemistry group at the University of Amsterdam

Yuliia Orlova

Universiteit van Amsterdam

- Océ Technologies B.V.

A CANON COMPANY

Technology Foundation STW

connecting innovators

