

Verena Schamboeck

Spring meeting WSC 2017, Antwerpen, 15.5.2017

UNIVERSITEIT VAN AMSTERDAM

Smoluchowski coagulation problem

- Coagulation problem: $C_r+C_s \rightarrow C_{r+s}$
- Master equation:

$$\frac{dc_r}{dt} = \frac{1}{2} \sum_{s=1}^{r-1} a_{s,r-s} c_s c_{r-s} - \sum_{s=1}^{\infty} a_{r,s} c_r c_s$$

- Applications in
 - Colloidal physics
 - Crowd dynamics
 - Social sciences
 - Astrophysics
 - Polymer chemistry

Smoluchowski coagulation problem

Master equation: •

$$\frac{dc_r}{dt} = \frac{1}{2} \sum_{s=1}^{r-1} a_{s,r-s} c_s c_{r-s} - \sum_{s=1}^{\infty} a_{r,s} c_r c_s$$

Reaction constant: a_{rs}=rs

Transformation using generating function: $C(z,t) = \sum_{r=1}^{\infty} c_r(t)e^{-rz}$ $\overset{2}{\bigcirc} + \overset{2}{\bigcirc}$

Substitution:
$$u(z,t) = -\frac{\partial C(z,t)}{\partial z}$$

 ∂z

→ inviscid Burgers equation:
$$\boxed{\frac{\partial u}{\partial t} = (M_1(t) - u) \frac{\partial u}{\partial z}}$$

J. Wattis An introduction to mathematical models of coagulation-fragmentation processes: A discrete deterministic mean-field approach

Physica D, 222 (2006), pp. 1-20

Smoluchowski coagulation problem

Already highly non-trivial behavior:

What about the topology?

- Smoluchowski coagulation problem:
 - Aggregates treated as a 'blob' without inner structure

Challenge:

Find a model for growing discrete structures, e.g. highly crosslinked networks evolving in time

- From local to global:
 - Local topology determined by arbitrary process that grows the network
 - Modeling the network as a random graph to extract global properties

Network theory

• Graph:

- Set of nodes connected by edges
 - Nodes: Degree (number of edges), various attributes
 - Edges: Directional (in & out), bidirectional
- Topology of a structure
- No spatial information

In

Edges

Connected components

Nodes

- Random graph:
 - Probability distribution over all possible graphs
 - Maximizes the entropy for a given degree distribution

Network theory

- Degree distribution:
 - Imagine global process governing the degree distribution

• t₀: No component with s>1

t₀<t<t_c: Growth of component

t_c: Phase transition – Emergence of the 'giant component' Giant component: scales linear with size of system

t>t_c: Weight fraction of giant component increases

t_{...}: No aggregate with s>1, only giant component

The degree distribution

- State of a node defined by
 - Properties that alter the probability of a node to connect: v, p
 - # in-edges, i
 - # out-edges, j
 - # bidirectional edges, k
- Concentration of states of nodes determined by polymerization reactions:

Master equation:

$$G_{v,p,i,j,k} = k_i[I] ((v+1)g_{v+1,p-1,i,j,k} - vg_{v,p,i,j,k}) + k_p c_{rd} ((v+1)g_{v+1,p-1,i-1,j,k} - vg_{v,p,i,j,k}) + k_p c'_{db} ((p+1)g_{v,p+1,i,j-1,k} - pg_{v,p,i,j,k}) + 2k_{td} c_{rd} ((p+1)g_{v,p+1,i,j,k} - pg_{v,p,i,j,k}) + 2k_{tc} c_{rd} ((p+1)g_{v,p+1,i,j,k-1} - pg_{v,p,i,j,k}).$$

Reaction network:

Information on history of edge formation

- Goal: Extract size distribution of connected components from local information
- Random graph with arbitrary degree distribution u(i,j,k) determined by the reaction mechanism
- Transformation to the domain of generating function:
 - Original degree distribution: $u(i,j,k) \rightarrow U(x,y,z) = \sum_{i,j,k}^{\infty} u(i,j,k) x^i y^j z^k$
 - Probability distribution for a node reached by an edge to be connected to further nodes:

- Reached by bidirectional edge $u_{
m bi}(i,j,k) \ o \ U_{bi}(x,y,z)$

- Connected components:
 - Size distribution

$$w(s) \rightarrow W(x)$$

 $W_{in}(s) \rightarrow W_{in}(x)$

- Biased size distribution:
 Size distribution of connected component reached by
 - In-edge
 - Out-edge $w_{out}(s) \rightarrow W_{out}(x)$
 - Bidirectional edge $w_{bi}(s) \rightarrow W_{bi}(x)$

- Size distribution of connected component reached by in-edge w_{in}
 - Size distribution of i out-components:

Convolution:
$$w_{out}(s)^* w_{out}(s)^* \dots^* w_{out}(s) \rightarrow W_{out}(x)^i$$

i-times

• Size distribution of i out-, j in- and k bidirectional components:

$$\underbrace{W_{out}^* \dots^* W_{out}^* W_{in}^* \dots^* W_{in}^* W_{bi}^* \dots^* W_{bi}}_{j-times} \rightarrow W_{out}^{i} W_{in}^{j} W_{bi}^{k}$$

GF of size distribution for component reached by in-edge;

$$W_{in} = x \sum_{i,i,k}^{\infty} U_{in}(i,j,k) W_{out}^{i} W_{in}^{j} W_{bi}^{k}$$

 $W_{in} = X U_{in} (W_{out}, W_{in}, W_{bi})$

 $W_{out} = x U_{out}(W_{out}, W_{in}, W_{bi})$ $W_{bi} = x U_{bi}(W_{out}, W_{in}, W_{bi})$

W_{bj}/

 U_{bi}

Wout

Win

Win

• 3 coupled functional equations:

 $W_{in} = x U_{in}(W_{out}, W_{in}, W_{bi})$

 $W_{out} = x U_{out}(W_{out}, W_{in}, W_{bi})$

 $W_{bi} = x U_{bi} (W_{out}, W_{in}, W_{bi})$

- \rightarrow solve numerically
- GF of size distribution of connected component

 $W = x U(W_{out}, W_{in}, W_{bi})$

- Back transform:
 - Derivatives

$$w(s) = \left[\left(\frac{\partial}{\partial x} \right)^n W(x) \right] \Big|_{x=0}$$

- Problem: Numerically unstable (only feasible until s~30)
- Inverse Fourier transform:

$$w(s) = \mathcal{F}^{-1}(W(x)), \text{ with } x = e^{-\frac{2\pi i}{N}}$$

- Advantage: stable, faster (s log(s))
- Disadvantage: evaluation for all s necessary

Analytic criterion for existence of the giant component

• Weight average component size defined as

$$\langle s \rangle = W'(x)|_{x=0}$$

with

$$W(x) = xU(W_{\text{out}}(x), W_{\text{in}}(x), W_{\text{bi}}(x))$$

$$(s) \rightarrow \text{infinity}$$

$$\mu_{110}^{2}(2\mu_{001} - \mu_{002}) + \mu_{011}^{2}(\mu - \mu_{200}) + \mu_{101}^{2}(\mu - \mu_{020}) \\ + \mu(\mu_{200} + \mu_{020} - 2\mu_{110})(2\mu_{001} - \mu_{002}) \\ + 2\mu_{101}\mu_{011}(\mu_{110} - \mu) + \mu_{200}\mu_{020}(\mu_{001} - \mu_{002}) = 0$$
with the partial moments $\mu_{\mu_{m_{2}}}$ of $\mu(i,i,k)$

r• 1000

Summary

- Growing particles have discrete structure
- Modeling the structure as a network
 - Random graph with arbitrary trivariate degree distribution
 - Degree distribution determined by Master equation, reaction network, ...
 - Extract size distribution of connected components
 - Ananlytic criterion for emergence of giant component

Acknowle	edger	nents	
 Computational poly Amsterdam 	ymer chemistr	y group at the	e University of
Piet ledema Ive	an Kryven	Yuliia Orlova	U NIVERSITEIT VAN AMSTERDAM
Océ Technologies B.V.		Technology Foundation STW	